
Josef Schefold, 21/09/17

Hydrogen Production with Steam Electrolysis: A Glance at 15 Years of Durability Research in EIFER

Steam electrolysis with electrolyte supported solid oxide cell (SOC)

H₂ production with steam electrolysis: durability....

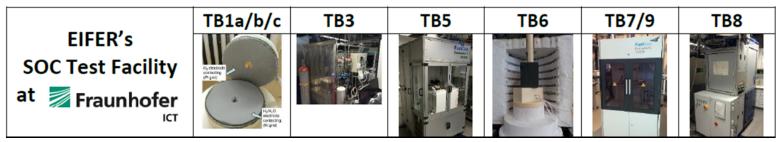
2

(Eifer-) History

- Steam electrolysis done since the beginning (activites started in EDF in Les Renardières (F); context of European projects)
- Nobody left from the initial team
- ➢ Laboratories: → in Fraunhofer ICT and KIT
- Most urgent project work after lab creation: cell (& interconnect) testing
- Many follow-up projects.....

Goal: Activities at interface **Applied Research // Development**

Scientific work $(\rightarrow$ Publishing)



Focus on (long-term) testing:

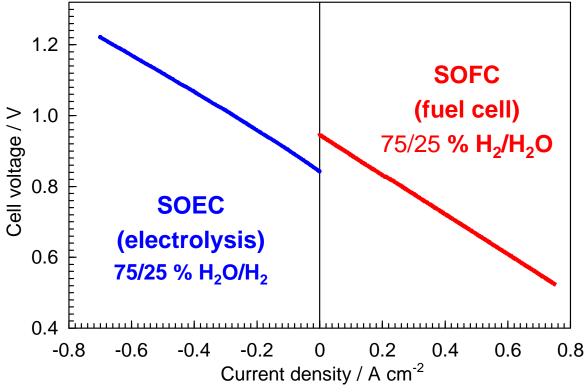
- test benches for cells, short stacks (<1 kWel) and stacks (1-10 kWel)</p>
- (1): from different producers (DTU, FZ-Jülich, \succ cells: Ceramtec, Kerafol, Sunfire...)
 - (2): reversible operation of existing fuel cells (SOFC)
- milestones & degradation analysis (impedance spectroscopy....)
- most critical bottleneck: no commercial testing equipment of sufficent reliability available

ScienceDirect:

Search in "Internat. Journal of Hydrogen Energy":

```
High temperature water electrolysis in solid oxide cells Original Research Article
   International Journal of Hydrogen Energy, Volume 33, Issue 20, October 2008, Pages 5375-5382
   Annabelle Brisse, Josef Schefold, Mohsine Zahid
                                                                         10/2008: 170 h test
   Abstract The PDF (792 K)
```

□ 23,000 h steam electrolysis with an electrolyte supported solid oxide cell Original Research Article International Journal of Hydrogen Energy, Volume 42, Issue 19, 11 May 2017, Pages 13415-13426 Josef Schefold, Annabelle Brisse, Hendrik Poepke 5/2017: 23,000 h test PDF (2613 K)


Abstract Graphical abstract Research highlights

SOFC = SOEC = SOC ?

Reversible operation example (Sunfire cell; 850°C)

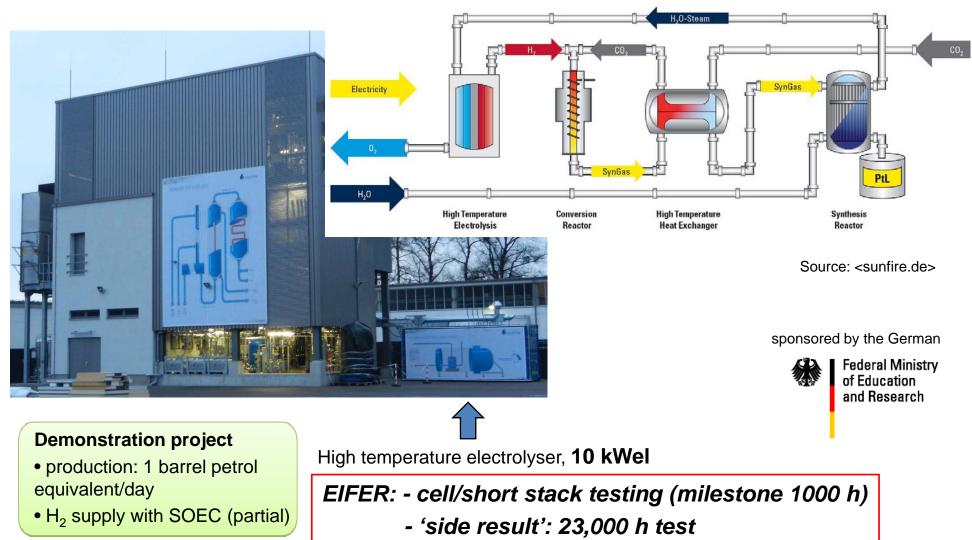
Solid oxide cells at high temperature:

 fast electrode kinetics → suitable for reversible operation

Present: fuel cells (SOFCs) usable for electrolysis

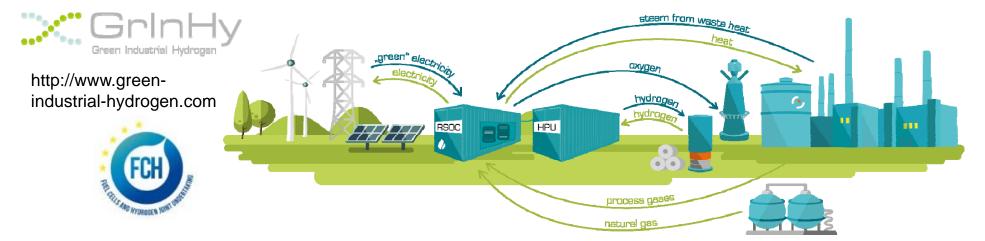
Future: increasing specific electrolysiscell (SOEC) development

SOEC Applications


- H₂ production
- Co-electrolysis (H₂O/CO₂)
- Power-to-gas
- Synfuel production
- Electricity grid stabilization
- Reversible operation (rSOCs)

Issue for all: Durability

SUNFIRE Project (2012-16): Power-to-Liquid with SOEC Technology ("Sector Coupling")



GrInHy Project of EU (2016-19) on Reversible SOC

Cell/stack testing by EIFER

	Efficiency	proof of reaching an overall electrical efficiency of at least 80 %LHV			
\sim	Upscaling	SOEC unit to a DC power input (stack level) of 120 $\mathrm{kW}_{\mathrm{el}}$	SOE	C:120	kW el
Ö	Operation	at least 7,000 h of operating the system			
X	Lifetime	greater than 10,000 h with a degradation rate below 1 %/1,000 h			
\$	Reversible Operation	higher capacity utilization for stronger business cases			
€⊠	Costs	development of dependable data on system costs and cost reductions			
	Exploitation Roadmap	reversible high-temperature electrolyzer as a marketable pro	duct		

GrInHy Reversible SOC Installation (06/2017)

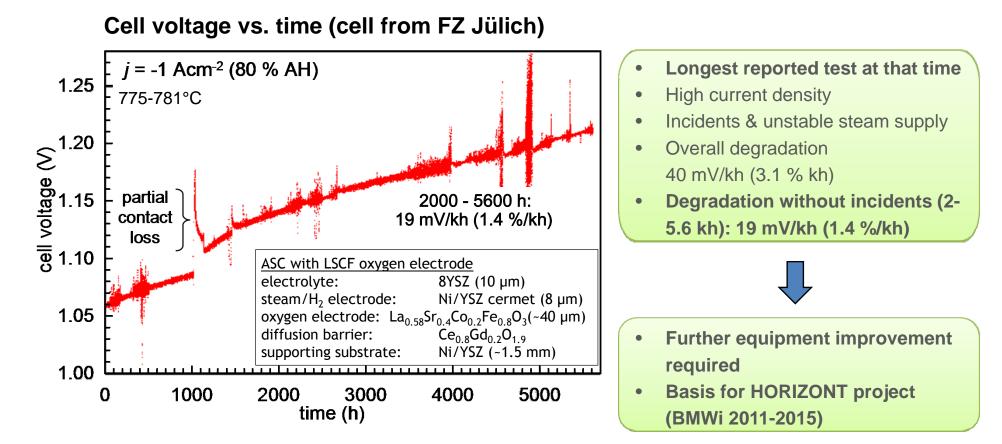
Container of the Reversible Solid Oxid Cells (RSOC) in Salzgitter

> SOEC: 120 kWel SOFC: 30 kWel

GrInHy system in Salzgitter (D)

© Salzgitter Flachstahl GmbH, 2017

H₂ production with steam electrolysis: durability....

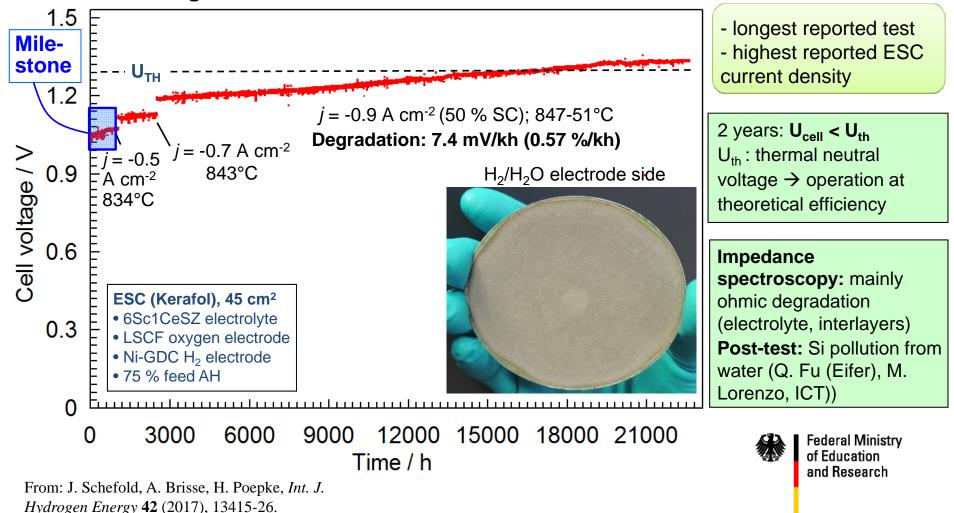

-j

Green Industrial Hydrogen

EIFER test 2010-2011: Electrode supported cell, 9,300 h @ -1.0 Acm⁻²

(a) J. Schefold, A. Brisse and F. Tietz, *J. Electrochem. Soc.* **159** (2), A137 (2012).
(b) F. Tietz, D. Sebold, J. Schefold, A. Brisse, *J. Power Sources*, **223**, 129 (2012).

Bundesministerium für Wirtschaft


und Technologie

9

EIFER test 2013-2016: Electrolyte supported cell; 20,000 h @ -0.9 Acm⁻² (SUNFIRE project)

Cell voltage vs. time

Summary / Outlook

- 1. Focus on long-term testing: Comparison of cells/stacks from different producers
- <u>Today</u>: degradation puts upper current limit to electrode supported cells (~0.7 to 1 Acm⁻²)
- 3. EIFER world record: 23,000 hours with 0.6 %/kh voltage degradation at 0.9 Acm⁻² current density (electrolyte supported cell from Kerafol)
- 4. Runnig work / Outlook
 - testing of industrial cells (Sunfire....)
 - ➢ further reduction of degradation & increase in power density & steam conversion
 - ➢ power modulation
 - > co-electrolysis
 - stack & system testing up to 10 kW power range
 - Quality assurance/ test procedures (European SOCTESQA project)

Thank you for your attention!

