

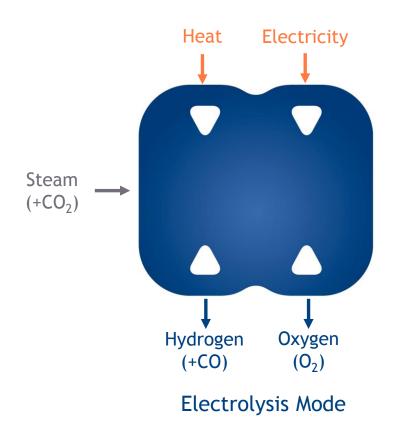
Green Industrial Hydrogen via Reversible High-Temperature Electrolysis

25-07-2017

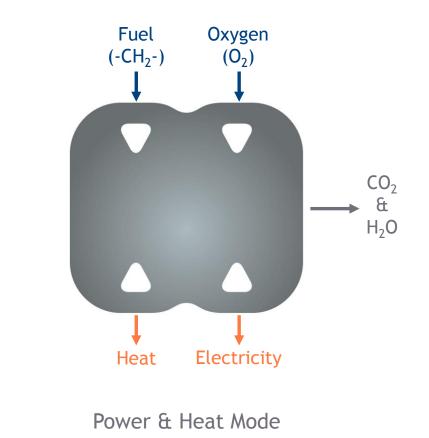
Konstantin Schwarze / SOFC XV

Investors

INV/E/N CAPITAL CEZ GROUP



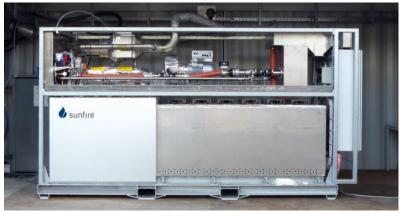
⁺Introduction



Solid Oxide Cells convert...

... electricity into hydrogen

... chemical energy into electricity and heat

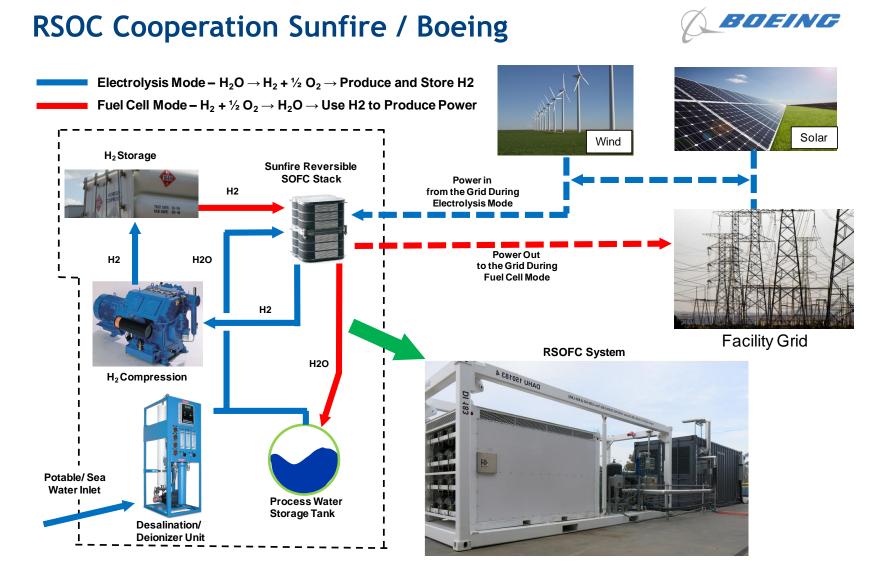


One Core - Multiple Products

+ Heat and Power for Households

+ Power and Heat for Commercial Buildings

+ Power for Remote Locations



+ Fuels and Gases for Mobility + Industry

⁺RSOC State of the Art

sunfire

System Highlights

- + Electricity storage for autonomous electricity supply during day and night (PV connected)
- + Application: Autonomous power supplies (e.g. islands), smart grids
- + 2 x 80 kW SOEC power input and 2x 20 kW SOFC power output (H₂ based)
- + Roundtrip efficiency ca. 45 %
- + Highlights:
 - Worlds first thermally self-sustained SOEC system at representative scale
 - First demonstration of RSOC technology at system level
 - ✓ Automatically controlled electricity storage and release → filling level of H₂ vessel

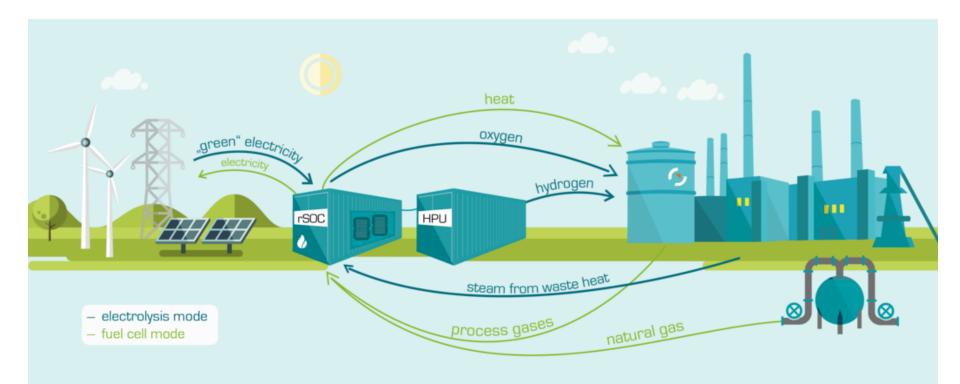
Commissioning at sunfire site, Germany

RSOC installation at Navy base in Los Angeles, USA

⁺The GrInHy Concept

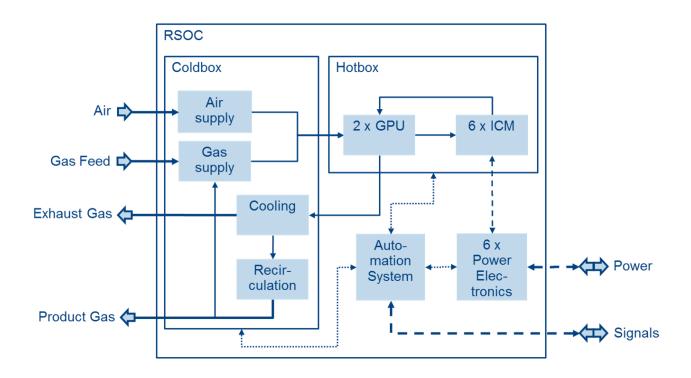
GrInHy Project

+ EU funded project (04/2016 - 03/2019)

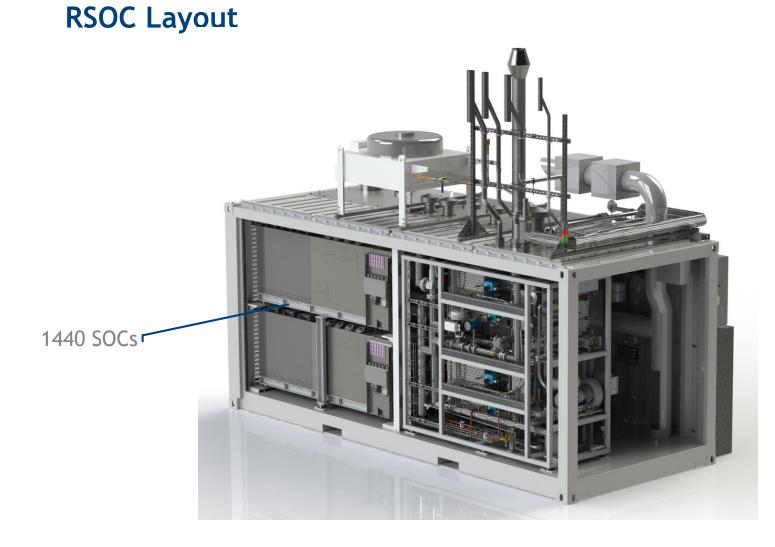


- + Objectives:
 - Overall electrical efficiency of at least 80 $\%_{\rm LHV}$
 - Scaling-up the SOEC unit up to 150 $\rm kW_{el}$
 - Operation > 7,000 h while meeting hydrogen quality standards of the steel industry
 - Integration of a reversible operation mode (fuel cell mode) with natural gas as feedstock
 - Integration in a relevant industrial environment

RSOC Integration in an Iron and Steel Work



⁺GrInHy System Layout



RSOC System Layout

- + System consists of RSOC Unit and Hydrogen Processing Unit
- + RSOC Layout:

Technical Data RSOC Unit

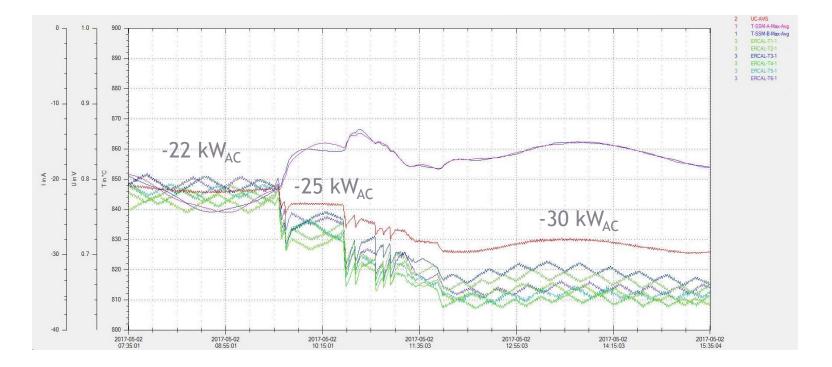
Operation Mode	EL Mode	H2-FC Mode	NG-FC Mode
AC Power Input	142,9 kW ± 8 %	-	-
AC Power Output	-	30 kW ± 10 %	25 kW ± 10 %
H2 Production	40 Nm³/h ± 5 %	-	-
Steam Consumption	45 kg/h ± 2.5 kg/h	-	-
H2 Consumption	-	21.3 Nm³/h ± 15 %	-
NG Consumption	-	-	5.3 Nm ³ /h ± 15 %
Dynamic Range	50125 %	30100 %	30100 %
Gross Efficiency AC	84 % ± 2 % points	47 % ± 2 % points	50 % ± 2 % points

Technical Hydrogen Processing Unit

+ The HPU by BR&T-E compresses and dries the Hydrogen to feed it to the onsite pipeline

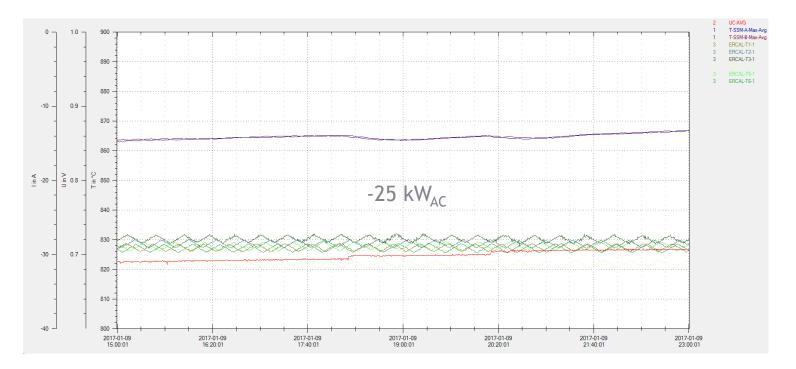
Parameter	Value	
Input Pressure	20 mbar(g)	
Output Pressure	8 bar(g)	
H2 Output	54 Nm³/h	
H2 Purity	Dew Point: -60 °C	
	N ₂ : < 200 ppmv	
	0 ₂ : < 1 ppmv	
AC Nominal Power	20 kW	

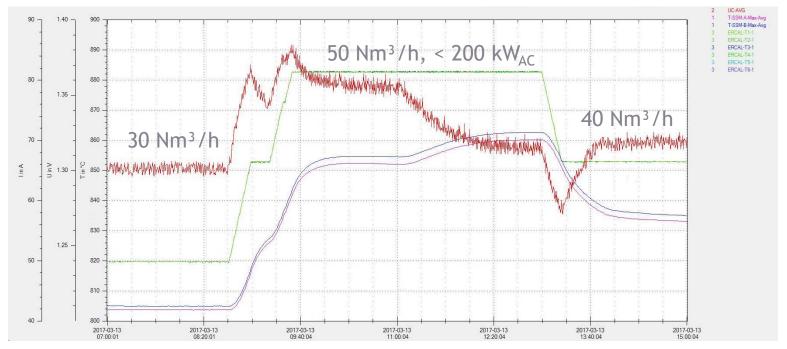
⁺RSOC Test Results


Lab testing

- + Tested Units: GrInHy RSOC + 2 identical commercial prototypes
- + Lab tested w/o HPU or integration in other processes
- + About 1000 hours testing each
- + Relevant load points were established in fully automated operation
- ightarrow Very good repeatability has been found

H2-FC Results


- + Power target reached: 30 kW_{AC} @ > 0.7 V/cell, 0.27 A/cm²
- + Gross AC Efficiency 45 % LHV @ full load, 50 % LHV maximum @ part load
- + High fuel utilization > 95 %
- + Part load ability achieved


NG-FC Results

- + Power target reached: 25 KW_{AC} @ > 0.7 V/cell, 0.23 A/cm²
- + Gross AC Efficiency 50 % LHV @ full load, 52 % LHV maximum @ part load
- + High fuel utilization of > 85 %
- + Part load ability achieved, but at relatively low efficiencies at deep part load

Electrolysis Results

- + Hydrogen output targets reached: 40 Nm³/h, including overload (50 Nm³/h) and peak load 200 kW_{AC}
- + Gross AC Efficiency 80 $\%_{\rm LHV}$ @ full load, > 75 $\%_{\rm LHV}$ minimum @ part load and overload
- + Systems shows very good operability and dynamics

+ Conclusion & Acknowledgement

Conclusion

- + High consistency between specification and test results was reached
- + Reaching the typically higher efficiencies in part load seems difficult
- + In Electrolysis mode efficiency is 2 % points lower than predicted
- + Reason for deviation between specs and test results
 - 1. Thermal losses higher than predicted

 \rightarrow Next generation hotbox will be more compact an comes with enhanced thermal insulation

2. Power electronics efficiency only 90 %

 \rightarrow Bidirectional power electronics with a high dynamic/voltage range operate in suboptimal load points: use of different unidirectional power electronics

3. Systematic error in power measurement

 \rightarrow Deviations between high-end lab measurements and more cost efficient online measurement: possibly recalibration needed

Conclusion

- + The prototypes were successfully operated as Electrolyser and Fuel Cell with Hydrogen and Natural Gas
- \rightarrow It is the worlds largest High-Temperature Electrolyser Unit
- + Possible further enhancements elaborated
- + Next step: Long term testing, operation in industrial environment

Acknowledgement

Green Industrial Hydrogen

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

THANK YOU! ENERGY EVERYWHERE

Konstantin Schwarze Project Engineer Large Systems

E: konstantin.schwarze@sunfire.de

sunfire GmbH Gasanstaltstraße 2 01237 Dresden Germany

W: www.sunfire.de