Josef Schefold, Annabelle Brisse

Long-term Steam Electrolysis with Solid Oxide Cells with up to 23 000 h Operation

European Institute for Energy Research, Emmy-Noether-Strasse 11, D-76131 Karlsruhe, Germany

(Shortened) Presentation from the **7th World Hydrogen Technology Convention** in Prague, Czech Republic, 9 - 12 July 2017.

Our focus: cell (& stack) testing; mainly long-term

- > at interface applied science // development
- > no own cell or stack development
- > data (comparison) for different structures and from different suppliers
- Iab test benches: 4x cells; 1x short-stack; 2x stack (1-10 kWel)
- milestones (23 000 h with Kerafol ESC.....)
- degradation analysis (in-situ with impedance spectroscopy)

Related Research Projects

'Sunfire' (2012 - 16): Power-to-Liquid with SOEC (D); 10 kWel

GrInHy Reversible SOC Installation (06/2017)

Fig. 2. Container of the Reversible Solid Oxid Cells (1440 rSOCs in 6 modules)

Fig. 1. GrInHy system in Salzgitter (D)

SOEC: 120 kWel SOFC: 30 kWel

© Salzgitter Flachstahl GmbH, 2017

WHTC 2017, Schefold, Steam Electrolysis, 10/07/2017

Outline

1. Introduction

- > influence of temperature & electrochemical kinetics
- > overview on our long-term cell data
- electrolysis with <u>electrode</u> and with <u>electrolyte</u> supported solid oxide cells

2. 23,000 h steam electrolysis benchmark test

- ➤ cell (voltage) degradation
- impedance (degradation)
- ➢ post-test data

3. Recent long-term work

- increase in current density & steam conversion
- > lower temperature
- > (industrial cells / cyclic operation)

Temperature Influence in Fuel Cell & Electroysis Operation

B <u>Electrochemical kinetics</u>: Faster reaction kinetics at high temperature

EIFER

SOEC vs. PEM/Alkaline

- lower equilibrium cell voltage (thermodyn.)
- lower losses (kinetics)

SOC (SOFC & SOEC)

- largely fixed electrode potentials
- suitable for reversible operation
- similar degradation expected

Selected long-term cell tests 2011-2016

Test	cell type	date	current	degradation	tempera-	feed	steam	equiv. time ^(a)	comment
duration	(project)		density		ture	humidity	convers.	(-0.5 Acm-2)	
9300 h	CSC* -	2010- 2011	-1 Acm-2 (9000 h)	tot: 40 mV/kh min: 19 mV/kh	780°C	80 %	36 %	18000 h	many incidents
6100 h	CSC* (Horizont)	2012	-0.75 Acm-2	10 mV/kh (0.8 %/kh)	780°C	80 %	40%	9150 h	1 st with acceptable stability

Test duration	cell type (project)	date	current density	degradation	tempera- ture	feed humidity	steam convers.	equiv. time ^{(a}) (-0.5 Acm-2)	comment
23000 h	ESC**	2013-	-0.9 Acm-2	7.4 mV/kh	850°C	75 %	50 %	40000 h	milestone
	(Sunfire)	2016	(20000 h)	(0.6 %/kh)					

- * Ni/8YSZ-8YSZ-LSCF (Research Centre Juelich, Germany)
 - ** Ni/GDC-6Sc1CeSZ-LSCF (company Kerafol, Germany)

 $^{\rm (a)}$ Time for identical total charge flow assuming 0.5 Acm^2 current density as typical in SOFC testing)

9300 h CSC:

J. Schefold, A. Brisse, F. Tietz, JES, 159 (2012) A137-44.

23000 h ESC:

J. Schefold, A. Brisse, H. Poepke, IHE, 42 (2017) 13415-26.

WHTC 2017, Schefold, Steam Electrolysis, 10/07/2017

Experimental: cells for steam electrolysis (cells are established as fuel cells)

Figures from Sunfire project GDC: gadolinia doped ceria LSCF: lanthanum strontium cobaltite ferrite

WHTC 2017, Schefold, Steam Electrolysis, 10/07/2017

Experimental: cell mounting & operation

(controlled evaporator mixer)

Open cell housing

- no sealing (issues)
- no poisoning due to metal corrosion (Cr....)
- H₂ production qualitatively measurable via temperature rise at TC2 (H₂ combustion)
- \rightarrow Suitable for long-term degradation work

Impedance spectroscopy

- equipment is implemented
- *in-situ* (no DC current interruption or change)
- typical sampling sequence: hours to days

SOEC degradation / H₂ electrode supported cells

H₂ electrode supported cells (CSCs) with Ni/YSZ cathode

- strong degradation increase above (0.7 to 1) Acm⁻², found by different groups ^(1,2,...)
- reason: interface instability electroyte/H₂ electrode (Nickel loss)
- this degradation is a major development issue for the SOEC application

Consider **electrolyte supported cells (ESCs**), preferably with different cathode materials

- (1) D. The, S. Grieshammer, M. Schroeder, M. Martin, M. Al Daroukh, F. Tietz, J. Schefold, A. Brisse, *J. Power Sources*, **275**, 901 (2015).
- (2) Q. Fang, L. Blum, N.H. Menzler, J. Electrochem. Soc., 162, F907 F912 (2015).

WHTC 2017, Schefold, Steam Electrolysis, 10/07/2017

Current densities in SOEC mode / ESC vs. CSC

Electrolyte supported cell: 20,000 h @ -0.9 Acm⁻²

J. Schefold, A. Brisse, H. Poepke, *Int. J. Hydrogen Energy* **42** (2017), 13415-26.

Impedance of ESC during 20,000 h @ -0.9 Acm⁻²

....Z' vs. time (>300 spectra)

Degradation:

- largely ohmic, from electrolyte (avg. rise: 7 m Ω cm²/kh or 6.3 mV/kh)
- fast initial rate & rate decrease
- non-ohmic electrode contributions: from Z differences HF/IF/LF → very low electrode degradation

J. Schefold, A. Brisse, H. Poepke, IHE 42 (2017), 13415-26.

Post test: Structure of aged cell

Cell after dismantling:

- largely intact cell structure
- Sr-Zirconate formation at interface electrolyte/oxygen electrode
- Si accumulation at H₂/H₂O electrode, most likely coming from impurities in the steam supply ⁽¹⁾

(1) Q. Fu et al., presented at *ICE-2017*, Copenhagen, 12-15 June 2017

Increase in current density (ESC)

- Cell with 6Sc1CeSZ electrolyte
- -1.2 Acm⁻² current density
- 60 % steam conversion

- Ca. 5 kh linear degradation, then accelerated due to anode delamination (total ~10 kh at -1.2 Acm⁻²)
- degradation in linear range: 11 mV/kh
- no limitation evident from H₂ electrode (cathode)
- \rightarrow higher current density at least feasible for intermediate time periods.

Cell voltage vs. time

¹⁾ J. Schefold, A. Brisse, M. Zahid, *J. Electrochem. Soc.* **156** (2009) B897.

Cell voltage vs. time

- current density 20 % above typical SOFC values
- cell voltage (1.25 1.35 V) close to thermal neutral voltage U_{th}
- low degradation

Summary

Background

- SOC allow highest energy-conversion efficiencies and reversible operation
- > Electrode supported cells (CSCs): current-density increase so far limited by degradation

Long-term testing (I): 23,000 h with electrolyte supported cell (ESC)

- > 20,000 h with $j = -0.9 \text{ Acm}^2 \rightarrow 7.4 \text{ mV/kh}$ (0.57 %/kh) voltage degradation
- degradation predominantly ohmic; small electrode degradation
- > post test work:
 - Sr-Zirconate formation (well-known from SOFC)
 - some delamination of the oxygen electrode
 - > Si accumulation at H_2 electrode

Long-term testing with ESC (II):

- \sim ~10,000 h with high current density (-1.2 Acm⁻²)
- ~10,000 h (running) at lower temperature (780°C)
- Outlook / ongoing work: commercial cells (3YSZ.....); cyclic operation; coelectrolysis, increase in steam-conversion rate.....

Thank you for your attention!

work sponsored by

Federal Ministry of Education and Research

