

Green Industrial Hydrogen via reversible high-temperature electrolysis

Simon Kroop, Salzgitter Mannesmann Forschung GmbH

Hannover, 2017-02-20

This project has received funding under grant agreement No 700300.

GrInHy: Who we are

www.green-industrial-hydrogen.com

The GrInHy consortium consists of 8 partners from 5 different EU countries and is characterized by its interdisciplinary expertise.

These include a technology specialized SME, large industries, university and non-university research organizations.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

GrInHy: Motivation

Higher shares of renewable energy require highly flexible units for

- energy production,
- load management and
- storages.

S

0

Ν

GrInHy: Mission

- First-time implementation of a reversible SOC generator implemented in an integrated iron and steel works
- **Proof of concept** of the **green hydrogen** production from renewable energy sources
- Assessment of further business cases (e.g. internal load management, grid services) or hydrogen applications (e.g. Carbon Direct Avoidance) to generate additional economical benefits
- Enhancements of the most powerful reversible high-temperature electrolyzer towards a marketable product

GrInHy: Technology

Reversible Solid Oxide Cell (here electrolysis mode)

GrInHy Project

Fuel Cell (SOFC mode)

GrInHy Project

GrInHy: Objectives

	Efficiency	proof of reaching an overall electrical efficiency of at least 80 %LHV
$\overline{\mathbf{x}}$	Upscaling	SOEC unit to a power input of 150 kW _{AC} and production of 40 Nm_{H2}^3 /h
Ø ₽	Operation	at least 7,000 h of operating the system
X	Lifetime	greater than 10,000 h with a degradation rate below 1 %/1,000 h
\$	Reversible Operation	higher capacity utilization for stronger business cases
€প্র	Costs	development of dependable data on system costs and cost reductions
	Exploitation Roadmap	reversible high-temperature electrolyzer as a marketable product

Work Plan & Milestones

GrInHy: System (I)

Highly integrated 20' container solution with all BoP components including e.g.

- reversible Solid Oxide Cells (6 ICM total)
- hot components (reformers and heat exchangers...)
- gas controls
- cooling system
- power electronics

GrInHy: System (II)

Highly integrated 20' container solution with all BoP components including e.g.

- reversible Solid Oxide Cells (6 ICM total)
- hot components (reformers and heat exchangers...)
- gas controls
- cooling system
- power electronics

visit us at www.green-industrial-hydrogen.com

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

