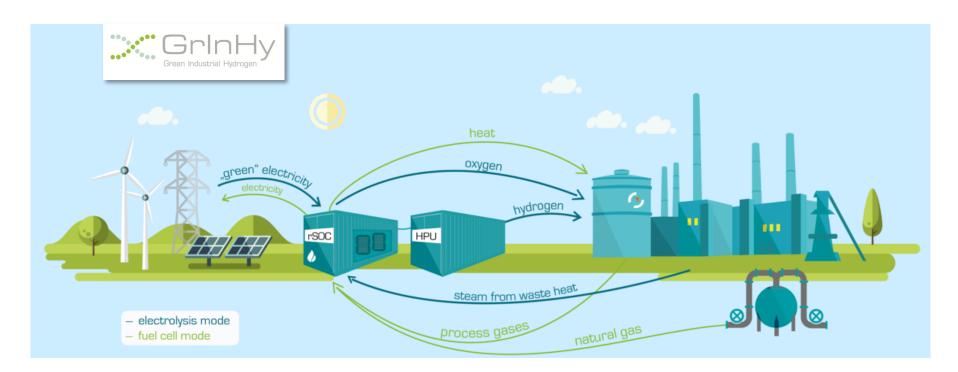
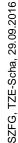


Green Industrial Hydrogen via Reversible High-Temperature Electrolysis

Ralph Schaper project manager, Salzgitter Flachstahl GmbH


Berlin, 2016-09-29


GrInHy: Mission

Mission Statements:

- Proof of concept in the industrial environment of an integrated iron and steel mill
- Development of a reversible high-temperature electrolyzer towards a marketable product by GrInHy's project outcomes
- meeting the hydrogen quality standards of the steel industry

GrInHy: Technology

Green Industrial Hydrogen via Reversible High-Temperature Electrolysis (HTE)

- Technology
 - At temperature levels of up to 900 °C, stacks of Solid Oxide Cells are producing H2 from steam
 - Highest electrical efficiency by integration of (waste) heat from production processes instead of electricity
 - Possibility of operating in a reversible mode
- SZ Motivation
 - Evaluation of the technology readiness level (TRL)
 - Techno-economical analysis of possible business cases besides hydrogen production (e.g. load management, grid balancing)
 - Experience in operating a electrolyzer and verification of meeting high quality standards
- Project Specifications (ID 700300)
 - Objective Manufacturing and operation of an pilot plant of 150 kW_{el, AC}
 - Duration
 03/2016 02/2019
 - Project Budget
 4.5 million €

GrInHy: Objectives

	Efficiency	proof of reaching an overall electrical efficiency of at least 80 %LHV
$\overline{\mathbf{x}}$	Upscaling	SOEC unit to a power input of 150 kW _{AC} and production of 40 Mm_{H2}^3 /h
Ø ₽	Operation	at least 7,000 h of operating the system
X	Lifetime	greater than 10,000 h with a degradation rate below 1 %/1,000 h
	Reversible Operation	higher capacity utilization for stronger business cases
€প্র	Costs	development of dependable data on system costs and cost reductions
	Exploitation Roadmap	reversible high-temperature electrolyzer as a marketable product

GrInHy: Who we are

The GrInHy consortium consists of 8 partners from 5 different EU countries and is characterized by its interdisciplinary expertise.

These include a technology specialized SME, large industries, university and non-university research organizations.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

