

GrInHy2.0 and future hydrogen-based steelmaking

German Chamber of Commerce Chile Virtual Study Tour H₂: Knowing Practical Hydrogen Applications

Simon Kroop, Salzgitter Mannesmann Forschung GmbH

This project has received funding under grant agreement No 826350.

Salzgitter Group: Group structure

Salzgitter AG							
Salzgitter Mannesmann / Salzgitter Klöckner-Werke							
Strip Steel BU	Plate / Section Steel BU	Mannesmann BU	Trading BU	Technology BU	Industrial Participations / Consolidation		
Salzgitter Flachstahl	llsenburger Grobblech	Mannesmannröhren-Werke	Salzgitter Mannesmann Handel	кнз	Verkehrsbetriebe Peine- Salzgitter		
Salzgitter Europlatinen	Salzgitter Mannesmann Grobblech	Europipe 50%	Salzgitter Mannesmann Stahlhandel	KHS Corpoplast	Hansaport 51%		
Salzgitter Bauelemente	Peiner Träger	Mannesmann Line Pipe	Salzgitter Mannesmann International	Klöckner DESMA Elastomertechnik	Gesis Gesellschaft für Informationssysteme		
Salzgitter Mannesmann Stahlservice	DEUMU Deutsche Erz- und Metall-Union	Mannesmann Grossrohr	Universal Eisen und Stahl	DESMA Schuhmaschinen	Telcat		
		Mannesmann Precision Tubes			Salzgitter Mannesmann Forschung		
		Mannesmann Stainless Tubes			Salzgitter Automotive Engineering		
		Hüttenwerke Krupp Mannesmann 30%			Salzgitter Hydroforming		
BU = Business Unit As of December 2019		Borusan Mannesmann Boru 23%			Aurubis 29.99%		

SALCOS – SAlzgitter Low CO₂ Steelmaking

Salzgitter Flachstahl GmbH – Integrated Steel Production Amidst the EU

- Concentrated at one location in Salzgitter/ Lower Saxony on an area of 7 square kilometers (~980 soccer fields)
- ~5 mt yearly crude steel capacity

Top modern production plants

- High-tech downstream facilities
- Very energy-efficient processes
- Compliant with all EU ecological standards

High-quality steel grades for sophisticated applications

- Hot-rolled and cold-rolled coil
- Electrogalvanized, hot dip galvanized and organic coated sheet
- Fabricated products for automobile and construction industry

		2017	2018
Crude steel production	kt	4,492	4,645
Sales	€m	2,652	2,887
Total workforce	31/12/	5,761	5,778

2013"

ESR

SALZGITTER

SALCOS – SAlzgitter Low CO₂ Steelmaking

Status quo – Energy flows of carbon-based integrated steelmaking

SALCOS – SAlzgitter Low CO₂ Steelmaking

Direct Reduction Process – Central Element of SALCOS

SALCOS is...

- pairing already established technologies with hydrogen technologies and an innovative operational concept
- a step-wise transformation of the integrated steelmaking route supporting the transition of the energy system
- reducing today's CO₂ emissions by more than 95%
- a sustainable "Carbon Direct Avoidance" approach: Reducing instead of recycling!

First GrInHy Project – Proof of energy-efficient hydrogen production

- World's biggest steam electrolyser producing 40 $\text{Nm}^3_{\text{H2}}/\text{h}$ (150 kW_{AC})
- Integration into infrastructure of Salzgitter's iron-and-steel works
- Hydrogen production with steam from waste heat and electricity
- Electrolyser electrical efficiency of 78 %_{LHV} sets new standards
- Operational experience from 12/2017 08/2019
- Meeting hydrogen quality for today's steel annealing processes
- In total, the system was operated for approx. 10,000 hours during project duration

GrInH

Green Industrial Hydroge

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY.

Green Industrial Hydrogen via steam electrolysis

POLITECNICO

NI TORINO

2.0

Who we are

The GrInHy2.0 consortium consists of six partners from four different EU countries and is characterized by its interdisciplinary expertise.

These include a technology specialized SME, large industries and a non-university research organization.

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under Grant Agreement No 826350. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

Role of Partners

Overall project coordination and environmental studies

Integration of electrolyser system and operation with steam from waste heat

Technical coordinator and manufacturer of steam electrolyser

Engineering and assembling of hydrogen processing unit for compression and drying

Implemention study of a hydrogen-based, low CO₂ steelmaking route in Europe Intensive long-term stack testing of steam electrolyser cells

Concept of GrInHy2.0

- 1 Renewable Energies
- 2 Steam-Electrolyser
- 3 Hydrogen Processing
- 4 Annealing Processes
- 5 Direct Reduction Plant

- Usage of renewable electricity
- Electrochemical hydrogen production based on steam from waste heat
- Compression, drying and injection of hydrogen into existing infrastructure
- Hydrogen for reducing atmosphere during annealing of cold-rolled steel
- Core aggregate of hydrogen-based, low CO $_{\circ}$ steelmaking of the future
- 6 Integrated Iron-and-Steel Works Integration into existing infrastructure and provision of steam from waste heat sources

Green Industrial Hydrogen via steam electrolysis

GrInHy2.0 is ...

- demonstrating the first Steam Electrolyser (StE) in the Megawatt-class in an industrial environment,
- the most energy-efficient hydrogen production using green electricity and steam from waste heat sources of the steelmaking processes,
- the optimized integration of the system into an existing infrastructure and operation via Salzgitter's energy management control system,
- producing 'green' hydrogen for today's steelmaking processes while assessing the technology's potential for a hydrogen-based, low carbon European steel industry in the future,
- setting new standards in long-term stack validation of the Solid Oxide Electrolysis Cell technology.
 Green Industrial Hydrogen via steam electrolysis

Objectives of GrInHy2.0 – Next milestone towards green steel

Participies

4COLONICO

SOCIO POINCA

- Electrolyser scale-up to 720 kW_{el,AC} producing 200 Nm³/h (18 kg/h)
- Electrical electrolyser efficiency up to 84 %_{el,LHV} (< 40 kWh_{el,AC}/kg)
- >13,000 operating hours at system level with a proved availability of > 95 %
- >20,000 operating hours at stack level
- Demonstrate hot start from minimum to maximum power in < 5 mins
- Produce >100 tons of green hydrogen
- Reduce electrolyser CAPEX to <4,500 €/(kg_{H2}/d) a
- Provide techno-economic studies for further market deployment
- Create viable technology by demonstration in a complex industrial environment
- Assess CO₂ avoidance potential of a hydrogen-based European steel industry
- Provide significant share of green hydrogen to the iron-and-steel works
- Evaluate situation on purchasing renewable electricity and green H₂ certification

GrInHy2.0 – Layout

Green Industrial Hydrogen via steam electrolysis

Hydrogen supply from 12/2020 on

- Steel industry is changing from carbon-based to hydrogen-based
- Central elements of this change are the direct reduction process and the electrolyser
- Since 2015 Salzgitter Group is actively working on this topic
- High-temperature electrolyser is the most promising technology to produce energy-efficiently hydrogen
- GrInHy2.0 is about manufacturing and operation of the world's biggest HTE at the integrated iron-and-steel works of Salzgitter Flachstahl GmbH
- Besides HTE we are assessing other electrolyser technologies (PEM-EL)

visit us: www.green-industrial-hydrogen.com

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 700300.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY. Green Industrial Hydrogen

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under Grant Agreement No 826350.

This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

