

Green Industrial Hydrogen via steam electrolysis

FCHJU meets GrInHy2.0

Simon Kroop (SZMF), Oliver Posdziech (Sunfire) Salzgitter, 2021-07-14

This project has received funding under grant agreement No 826350.

First GrInHy Project – Proof of energy-efficient hydrogen production

GrInHy: 03/2016 – 02/2019.

- World's biggest steam electrolyser producing 40 Nm³_{H2}/h (150 kW_{AC})
- Integration into infrastructure of Salzgitter's iron-and-steel works
- Hydrogen based on steam from waste heat
- Electrolyser electrical efficiency of 78 %_{LHV} sets new standards
- Operational experience from 12/2017 08/2019
- 90,000 Nm³_{H2} for today's steel annealing processes

• In total, the system was operated for approx. 10,000 hours during project duration

Role of Partners

Overall project coordination and environmental studies SALZGITTER FLACHSTAHL A Member of the Salzgitter Group

Integration of electrolyser system and operation with steam from waste heat

Technical coordinator and manufacturer of steam electrolyser

Engineering and assembling of hydrogen processing unit for compression and drying

Implemention study of a hydrogen-based, low CO₂ steelmaking route in Europe

Intensive long-term stack testing of SOECs

The GrInHy2.0 prototype in a Nutshell

• First High Temperature Electrolyser in megawatt scale:

720 kW_{el,AC} producing 200 Nm³/h (18 kg/h)

• Full integration into the existing infrastructure and management energy control system:

>13,000 operating hours while producing at least 100 t hydrogen

• Hydrogen based on green electricity and industrial steam from waste heat:

Electrical electrolyser efficiency up to 84 $%_{el,LHV}$ (< 40 kWh_{el,AC/kg})

Solid Oxide Electrolysis Cell (SOEC)

SOEC Advantages:

- One-third of the total energy comes from heat → SOECs require less renewable electricity
- Direct syngas production by Co-Electrolysis
 2 H₂0 + CO₂ → 2 H₂ + C0 + 1.5 O₂
- Stack can be operated reversibly to generate electrical power

Green Industrial Hydrogen via steam electrolysis

Technical Development since GrInHy

Lessons Learned

GrInHy → GrInHy2.0

- Increase the number of stacks per module
- Simplified manufacturing processes
- Highly integrated system layout
- HPU layout with optimized drying and compression concept → higher efficiency and ≈ 100 % H2 recovery

Lessons Learned

GrInHy2.0 → MultiPLHY

- Off-the-shelf power electronics → higher efficiency at lower costs
- Stack exchange concept

 → reduced maintenance
 costs and higher availability
- New installation and safety concept

MultiPLHY → Generation 3

Next Steps

 Dedicated SOEC stack with higher power density, lower costs and increased robustness

Technical Development since GrInHy

Module Development:

 \rightarrow Major costs and footprint reduction

Gen0: 24 Stacks per Module ≈ 75 kW_{AC}

Gen1: 36 Stacks per Module ≈ 115 kW_{AC}

Gen2: 60 Stacks per Module ≈ 250 kW_{AC}

• WiP: Generation 3 with a new dedicated SOEC stack > 1 MW per Module

GrInHy2.0 – Status

System validation: Electrical effciencies

Hydrogen Supply Salzgitter Flachstahl

SALCOS – SAlzgitter Low CO₂ Steelmaking

SALCOS® – Flexible hydrogen-based direct reduction

SALZGITTERAG

Stahl und Technologie

SALCOS – SAlzgitter Low CO₂ Steelmaking

Transformation of integrated steelmaking in Salzgitter to H_2 enhanced DRP/EAF-based steelmaking in three stages

Green Industrial Hydrogen

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (JU) under Grant Agreement No 826350.
This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.

